我使用云训练平台训练好了模型部署过程中,先是使用了1_3版本的,检测正常,屏幕也显示正常,又试了1_2_2版本的,屏幕就不能正常显示,下面的代码是我修改过后,加了串口发送检测结果的代码,屏幕依旧不能正常显示,但是串口发送的数据是正常的,我使用的是亚博智能的k230视觉模块,请问一下是哪里的配置有问题吗?还是屏幕的分辨率不匹配吗?
我使用云训练平台训练好了模型部署过程中,先是使用了1_3版本的,检测正常,屏幕也显示正常,又试了1_2_2版本的,屏幕就不能正常显示,下面的代码是我修改过后,加了串口发送检测结果的代码,屏幕依旧不能正常显示,但是串口发送的数据是正常的,我使用的是亚博智能的k230视觉模块,请问一下是哪里的配置有问题吗?还是屏幕的分辨率不匹配吗?
import gc
import os
import time
import aicube
import image
import nncase_runtime as nn
import ujson
import ulab.numpy as np
from libs.PipeLine import ScopedTiming
from libs.Utils import *
from media.display import *
from media.media import *
from media.sensor import *
from ybUtils.YbUart import YbUart # 亚博智能串口库
# 设置显示模式
display_mode = "hdmi"
if display_mode == "lcd":
DISPLAY_WIDTH = ALIGN_UP(800, 16)
DISPLAY_HEIGHT = 480
else:
DISPLAY_WIDTH = ALIGN_UP(1920, 16)
DISPLAY_HEIGHT = 1080
OUT_RGB888P_WIDTH = ALIGN_UP(640, 16)
OUT_RGB888P_HEIGH = 360
root_path = "/sdcard/mp_deployment_source/"
config_path = root_path + "deploy_config.json"
deploy_conf = {}
debug_mode = 1
# 初始化串口
try:
uart = YbUart(baudrate=115200)
print("UART initialized successfully")
except Exception as e:
print(f"Error initializing UART: {e}")
uart = None
# 检测结果计数器
ripe_count = 0
unripe_count = 0
spot_detected = False
last_report_time = time.time()
def two_side_pad_param(input_size, output_size):
ratio_w = output_size[0] / input_size[0] # 宽度缩放比例
ratio_h = output_size[1] / input_size[1] # 高度缩放比例
ratio = min(ratio_w, ratio_h) # 取较小的缩放比例
new_w = int(ratio * input_size[0]) # 新宽度
new_h = int(ratio * input_size[1]) # 新高度
dw = (output_size[0] - new_w) / 2 # 宽度差
dh = (output_size[1] - new_h) / 2 # 高度差
top = int(round(dh - 0.1))
bottom = int(round(dh + 0.1))
left = int(round(dw - 0.1))
right = int(round(dw - 0.1))
return top, bottom, left, right, ratio
def read_deploy_config(config_path):
# 打开JSON文件以进行读取deploy_config
with open(config_path, "r") as json_file:
try:
# 从文件中加载JSON数据
config = ujson.load(json_file)
except ValueError as e:
print("JSON 解析错误:", e)
return config
def detection():
global ripe_count, unripe_count, spot_detected, last_report_time
print("det_infer start")
# 使用json读取内容初始化部署变量
deploy_conf = read_deploy_config(config_path)
kmodel_name = deploy_conf["kmodel_path"]
labels = deploy_conf["categories"]
confidence_threshold = deploy_conf["confidence_threshold"]
nms_threshold = deploy_conf["nms_threshold"]
img_size = deploy_conf["img_size"]
num_classes = deploy_conf["num_classes"]
color_four = get_colors(num_classes)
nms_option = deploy_conf["nms_option"]
model_type = deploy_conf["model_type"]
if model_type == "AnchorBaseDet":
anchors = deploy_conf["anchors"][0] + deploy_conf["anchors"][1] + deploy_conf["anchors"][2]
kmodel_frame_size = img_size
frame_size = [OUT_RGB888P_WIDTH, OUT_RGB888P_HEIGH]
strides = [8, 16, 32]
# 计算padding值
top, bottom, left, right, ratio = two_side_pad_param(frame_size, kmodel_frame_size)
# 初始化kpu
kpu = nn.kpu()
kpu.load_kmodel(root_path + kmodel_name)
# 初始化ai2d
ai2d = nn.ai2d()
ai2d.set_dtype(nn.ai2d_format.NCHW_FMT, nn.ai2d_format.NCHW_FMT, np.uint8, np.uint8)
ai2d.set_pad_param(True, [0, 0, 0, 0, top, bottom, left, right], 0, [114, 114, 114])
ai2d.set_resize_param(True, nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
ai2d_builder = ai2d.build(
[1, 3, OUT_RGB888P_HEIGH, OUT_RGB888P_WIDTH], [1, 3, kmodel_frame_size[1], kmodel_frame_size[0]]
)
# 初始化并配置sensor - 修复屏幕不亮的关键步骤
sensor = Sensor()
sensor.reset()
# 设置镜像
sensor.set_hmirror(False)
# 设置翻转
sensor.set_vflip(False)
# 通道0直接给到显示VO,格式为YUV420
sensor.set_framesize(width=DISPLAY_WIDTH, height=DISPLAY_HEIGHT)
sensor.set_pixformat(PIXEL_FORMAT_YUV_SEMIPLANAR_420)
# 通道2给到AI做算法处理,格式为RGB888
sensor.set_framesize(width=OUT_RGB888P_WIDTH, height=OUT_RGB888P_HEIGH, chn=CAM_CHN_ID_2)
sensor.set_pixformat(PIXEL_FORMAT_RGB_888_PLANAR, chn=CAM_CHN_ID_2)
# 绑定通道0的输出到vo - 确保显示绑定正确
sensor_bind_info = sensor.bind_info(x=0, y=0, chn=CAM_CHN_ID_0)
Display.bind_layer(**sensor_bind_info, layer=Display.LAYER_VIDEO1)
# 初始化显示设备 - 修复屏幕不亮的关键步骤
if display_mode == "lcd":
# 设置为ST7701显示,默认800x480
Display.init(Display.ST7701, to_ide=True)
else:
# 设置为LT9611显示,默认1920x1080
Display.init(Display.LT9611, to_ide=True)
# 创建OSD图像
osd_img = image.Image(DISPLAY_WIDTH, DISPLAY_HEIGHT, image.ARGB8888)
# media初始化 - 修复屏幕不亮的关键步骤
MediaManager.init()
# 启动sensor - 确保摄像头开始工作
sensor.run()
rgb888p_img = None
ai2d_input_tensor = None
data = np.ones((1, 3, kmodel_frame_size[1], kmodel_frame_size[0]), dtype=np.uint8)
ai2d_output_tensor = nn.from_numpy(data)
# 主循环
while True:
with ScopedTiming("total", debug_mode > 0):
rgb888p_img = sensor.snapshot(chn=CAM_CHN_ID_2)
if rgb888p_img.format() == image.RGBP888:
ai2d_input = rgb888p_img.to_numpy_ref()
ai2d_input_tensor = nn.from_numpy(ai2d_input)
# 使用ai2d进行预处理
ai2d_builder.run(ai2d_input_tensor, ai2d_output_tensor)
# 设置模型输入
kpu.set_input_tensor(0, ai2d_output_tensor)
# 模型推理
kpu.run()
# 获取模型输出
results = []
for i in range(kpu.outputs_size()):
out_data = kpu.get_output_tensor(i)
result = out_data.to_numpy()
result = result.reshape((result.shape[0] * result.shape[1] * result.shape[2] * result.shape[3]))
del out_data
results.append(result)
# 使用aicube模块封装的接口进行后处理
det_boxes = aicube.anchorbasedet_post_process(
results[0],
results[1],
results[2],
kmodel_frame_size,
frame_size,
strides,
num_classes,
confidence_threshold,
nms_threshold,
anchors,
nms_option,
)
# 重置计数器
ripe_count = 0
unripe_count = 0
spot_detected = False
# 绘制结果并统计
osd_img.clear()
if det_boxes:
for det_boxe in det_boxes:
x1, y1, x2, y2 = det_boxe[2], det_boxe[3], det_boxe[4], det_boxe[5]
x = int(x1 * DISPLAY_WIDTH // OUT_RGB888P_WIDTH)
y = int(y1 * DISPLAY_HEIGHT // OUT_RGB888P_HEIGH)
w = int((x2 - x1) * DISPLAY_WIDTH // OUT_RGB888P_WIDTH)
h = int((y2 - y1) * DISPLAY_HEIGHT // OUT_RGB888P_HEIGH)
# 绘制边界框
osd_img.draw_rectangle(x, y, w, h, color=color_four[det_boxe[0]][1:])
# 绘制标签和置信度
text = labels[det_boxe[0]] + " " + str(round(det_boxe[1], 2))
osd_img.draw_string_advanced(x, y - 40, 32, text, color=color_four[det_boxe[0]][1:])
# 统计检测结果
class_id = det_boxe[0]
if class_id == 0: # 成熟草莓
ripe_count += 1
elif class_id == 1: # 不成熟草莓
unripe_count += 1
elif class_id == 2: # 斑点
spot_detected = True
# 显示结果
Display.show_image(osd_img, 0, 0, Display.LAYER_OSD3)
# 通过串口发送检测结果
current_time = time.time()
if uart and (current_time - last_report_time > 0.5 or ripe_count > 0 or unripe_count > 0 or spot_detected):
# 发送草莓检测结果
message = f"Ripe:{ripe_count}, Unripe:{unripe_count}\n"
uart.send(message)
# 如果检测到斑点
if spot_detected:
uart.send("Spot detected\n")
last_report_time = current_time
gc.collect()
rgb888p_img = None
# 清理资源
del ai2d_input_tensor
del ai2d_output_tensor
# 停止摄像头输出
sensor.stop()
# 去初始化显示设备
Display.deinit()
# 释放媒体缓冲区
MediaManager.deinit()
gc.collect()
time.sleep(1)
nn.shrink_memory_pool()
print("det_infer end")
return 0
if __name__ == "__main__":
try:
detection()
except Exception as e:
print(f"程序异常: {e}")
finally:
# 关闭串口
if uart:
uart.deinit()
print("UART closed")